博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python: 矩阵与线性代数运算
阅读量:5963 次
发布时间:2019-06-19

本文共 1088 字,大约阅读时间需要 3 分钟。

需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

矩阵类似于3.9 小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

>>> import numpy as np>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])>>> mmatrix([[ 1, -2, 3],[ 0, 4, 5],[ 7, 8, -9]])>>> # Return transpose>>> m.Tmatrix([[ 1, 0, 7],[-2, 4, 8],[ 3, 5, -9]])>>> # Return inverse>>> m.Imatrix([[ 0.33043478, -0.02608696, 0.09565217],[-0.15217391, 0.13043478, 0.02173913],[ 0.12173913, 0.09565217, -0.0173913 ]])>>> # Create a vector and multiply>>> v = np.matrix([[2],[3],[4]])>>> vmatrix([[2],[3],[4]])>>> m * vmatrix([[ 8],[32],[ 2]])>>>

 可以在numpy中找到更多的操作函数

>>> import numpy.linalg>>> # Determinant>>> numpy.linalg.det(m)-229.99999999999983>>> # Eigenvalues>>> numpy.linalg.eigvals(m)array([-13.11474312, 2.75956154, 6.35518158])>>> # Solve for x in mx = v>>> x = numpy.linalg.solve(m, v)>>> xmatrix([[ 0.96521739],[ 0.17391304],[ 0.46086957]])>>> m * xmatrix([[ 2.],[ 3.],[ 4.]])>>> v matrix([[2], [3], [4]])

 很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。但是,如果需要操作数组和向量的话, NumPy 是一个不错的入口点。可以访问NumPy 官网http://www.numpy.org 获取更多信息。

 

转载于:https://www.cnblogs.com/baxianhua/p/9924117.html

你可能感兴趣的文章
Web service (一) 原理和项目开发实战
查看>>
跑带宽度多少合适_跑步机选购跑带要多宽,你的身体早就告诉你了
查看>>
深入理解Java的接口和抽象类
查看>>
Javascript异步数据的同步处理方法
查看>>
iis6 zencart1.39 伪静态规则
查看>>
SQL Server代理(3/12):代理警报和操作员
查看>>
Linux备份ifcfg-eth0文件导致的网络故障问题
查看>>
2018年尾总结——稳中成长
查看>>
JFreeChart开发_用JFreeChart增强JSP报表的用户体验
查看>>
度量时间差
查看>>
通过jsp请求Servlet来操作HBASE
查看>>
Shell编程基础
查看>>
Shell之Sed常用用法
查看>>
3.1
查看>>
校验表单如何摆脱 if else ?
查看>>
<气场>读书笔记
查看>>
Centos下基于Hadoop安装Spark(分布式)
查看>>
3D地图的定时高亮和点击事件(基于echarts)
查看>>
mysql开启binlog
查看>>
设置Eclipse编码方式
查看>>